【资料图】
1、洛伦兹曲线的方法 尽管可根据收入分配的统计数据加以描绘,但至今却未能找到一种有效的方法,准确地拟合洛伦兹曲线方程并由此求出精确的基尼系数.目前常被使用的方法主要有三种:(1)几何计算法 即根据分组资料,按几何图形分块近似逼近计算的方法.(2)间接拟合法 即先拟合求出收入分配的概率密度函数,再根据概率密度函数导出洛伦兹曲线.(3)曲线拟合法 即选择适当的曲线直接拟合洛伦兹曲线,常用的曲线有二次曲线、指数曲线和幂函数曲线. 利用第一种方法不能得到洛伦兹曲线的表达式,只能用来计算基尼系数,但由于在计算分块面积时用直线近似地代替曲线,所估计的基尼系数要小于实际值,尤其在数据点较少时,误差较大.第二种方法由于计算收入分配的概率密度的复杂性,很难提出合适的概率函数.至于第三种方法,即直接用曲线方程去拟合洛伦兹曲线,应该不失为一种较好的方法,但目前主要的问题在于现有常用的曲线并不适用,曲线含义不明确,或拟合误差较大. 为了更准确地描述洛伦兹曲线和精确地估计基尼系数,我们通过分析洛伦兹曲线的特性,设计出一条洛伦兹曲线方程,对洛伦兹曲线直接进行拟合.经过实例分析,拟合效果好,由洛伦兹曲线可推导出基尼系数的计算公式,计算结果精确度也很高.。
本文就为大家分享到这里,希望小伙伴们会喜欢。
Copyright © 2015-2022 华中科普网版权所有 备案号:京ICP备12018864号-26 联系邮箱:2 913 236 @qq.com